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The aim of this study was to compare the performance of different supervised discrimination methods
based on IR data for the classification of starches according to the type of chemical modification
undergone. The goal of the supervised classification methods is to develop classification rules.
Representative samples of each group (known beforehand) were available, from which the relevant
characteristics (chemical modification) were known. On the basis of a training data set, classification
rules are determined, which can then be applied to classify new (unknown) samples.
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INTRODUCTION

Starch is naturally found in all sorts of plants, located in their
roots, stems, seeds, or fruits. Starch is a source of energy for
the plants during dormancy and germination, and it serves
similar purposes for human and animal nutrition.

The most common sources of food starch are corn, potato,
wheat, tapioca, and rice. All starches are made up of amylose
and amylopectin, with a ration that varies according to the starch
source. Corn contains about 25-28% amylose, while high
amylose corn can be as high as 80%. Tapioca has about 17%
amylose, and waxy maize has virtually none.

The building blocks of starch areR-D andâ-D glucose, which
are linked together through enzymatic condensation occurring
mainly between carbons 1 and 4, but occasionally between 1
and 6. Amylose refers to a linear chained homopolymer
containing onlyR-1,4 linkages. The length of this chain will
vary with plant source, but the average length will be between
500 and 2000 glucose units. Amylopectin refers to a branched
polymer, due to occasional linkage between glucose units at
carbons 1 and 6. This results in the development of a more
massive molecule but with linear chain lengths of only 25-30
glucose units.

In the food industry, starch is used to modulate product char-
acteristics such as texture, appearance, or stability, in a wide
range of applications from baby foods to ice cream. In the un-
modified or native form, starches have limited use in the food
industry; therefore, starches undergo a process of modification
(physical or chemical) to modulate their properties to provide

the expected thickening, water binding, stabilizing, gelling effect
or to improve mouth feel and shininess of the product. Starches
can also be cross-linked in order to provide heat, acid, and shear
tolerance.

Identification of raw materials is a requirement of the Good
Manufacturing Practices, with the aim of ensuring product
safety, raw material traceability, and consistent quality. Starches
can be identified by means of traditional wet chemical methods,
as described in the Compendium of Food Additive Specifica-
tions, Addendum 5 “Modified Starches” (1). These methods are
time- and money-consuming, and they require skilled operators.
They are not adequate for the rapid identification check to be
performed in the food industry at the reception of raw materials
or just before their use in production.

Various alternative methods such as near infrared spectros-
copy (NIR), Fourier transform infrared spectroscopy (FTIR),
nuclear magnetic resonance, X-ray fluorescence, or X-ray
diffraction spectroscopy have already been successfully evalu-
ated for the identification or the characterization of selected raw
materials. Applying new powerful chemometric tools, FTIR
spectroscopy has proved to be a promising technology for the
identification of modified starches (2,3).

This study aimed at evaluating the potential of FTIR
spectroscopy to identify modified starches in a food industry
environment. For this purpose, different discrimination tech-
niques were applied as follows: classical methods such as linear
discriminant analysis (LDA) (4, 5), quadratic discriminant
analysis (QDA) (5), k-nearest neighbors (kNN) (6), soft
independent modeling of class analogies (SIMCA) (7), partial
least squares discriminant analysis (PLS-DA) (8), or artificial
neural networks (ANN) (9, 10) and more recent techniques such
as support vector machines (SVM) (11-16).
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THEORY

For the application of all of the different classification
methods, the data set was summarized by annxm matrix X
wheren denotes the number of samples (starches) andmdenotes
the number of wavelengths. In such a way, when the samples
belong to known classes, the data for each observationi
consisted of a predictor vectorxi ) (xi,1,...xi,m) and a class level
(response or dummy variable)yi. For K classes, the class labels
yi were defined to be integers ranging from 1 tok. Predictors
were built from observations, which were known to belong to
certain classes (i.e., from past experience). Such observations
constituted the training set. The results (models) obtained using
this training set may then be applied to a test set. Here, a full
analysis was carried out including diagnostics, data reduction/
selection, modeling, and validation of models.

Data Reduction. Because in IR data sets the number of
variables is larger than the number of objects, most of the
discrimination methods cannot be directly applied. Two methods
for data reduction are applied here: the principal component
analysis (PCA) (17) and the Fisher criterion (FC) (18).

PCA is used to reduce the data dimensionality by creating
new orthogonal variables (scores or latent variables) that are
linear combinations of the original measuredx-variables (absor-
bances at different wavelengths). Only the first new variables
or PCs, accounting for most of the variance of the original data,
contain meaningful information, while the last ones, which
account for a small amount of variance, contain more noise and
can be ignored.

PCA is also performed on the data in order to make a first
homogeneity study. The scores (T) can highlight clustering,
trends, and outliers in the sample space in the data matrix. The
loadings (P) focus on the variation in the variable space,
describing the influence of the variables on the scoresT. PCA
is only able to identify large variability and is not always able
to distinguish “between groups” and “within groups” variability.
For that, the FC can be used. The FC describes the ratio of
“between class” variance to “within class” variance that is
helpful to decide which original variables have an important
discriminating power.

For each variablej, the FC maximizes the distance between
the means of the classes while minimizing the variance within
each class. This criterion is described as:

whereHj ) ∑i)1
K ni(xjij - xj.j)2 is the between class variance and

E ) ∑i)1
K (nk - 1)sij

2 is the within class variance, whereni is the
number of objects in classi, xjij is the mean absorbance of the
objects belonging to classi at the j-th wavelength,xj.j is the
mean absorbance of the objects belonging to all classes at the
j-th wavelength, andsij is the standard deviation of the absor-
bance of the objects belonging to classi at thej-th wavelength.

Discrimination. First, a distinction between supervised and
unsupervised learning methods has to be done (5). A learning
method is considered supervised if information about the
structure/grouping of the objects is assumed to be known or at
least partially known. This prior knowledge is then used in the
analysis process. However, prior information about data is often
not available, in which case the information needs to be inferred
directly from the given spectral data in an unsupervised manner.
An unsupervised learning method learns in the absence of a
teacher signal that provides a prior knowledge of the true classes.
Whereas unsupervised methods determine how a set of data
clusters into functional groups, supervised methods determine

what expression characteristics of a given data make it part of
a given functional group. Supervised methods can use complex
models that exploit the specific characteristics of the given
functional group. The supervised classification methods can be
divided into two groups: simply discrimination methods and
class-modeling techniques. The aim of the simply discrimination
methods is to find classification rules, which define optimal
boundaries between all given classes by maximizing the
difference between them. A new object will be assigned to one
class, namely, to the class to which it is the most similar. The
simplest method is the one based on the FC, the Fisher linear
discriminant method (19). This method measures the weighted
(by the intraclass scattering) separation between the classes. The
larger the FC is, the larger the weighted distance between the
classes. Methods such as LDA (4, 5), QDA (5), or kNN (6)
can also be included in this group. Also, classical techniques
such as PLS-DA (8) or ANN (9, 10) and a more recent approach,
namely, SVM (11-16), are included in this simple discrimina-
tion group. A shortcoming of such methods is that the detection
of a sample not belonging to any group becomes impossible.
The class-modeling techniques can deal with this problem
because they establish an individual model for each class based
on its training set. For this kind of method, more emphasis is
put on similarities between the objects within a class. An
unknown object will only be assigned to a class, if it falls within
the defined volume of that class. If it falls outside, it is
considered as an outlier for that class. Methods such as SIMCA
(7) can be included in this group.

All of these techniques (LDA, QDA, kNN, PLS, ANN, and
SIMCA) have been widely described in the literature (5)
showing their drawbacks and advantages. Here, the most recent
technique, SVM, is described.

SVM. SVM is a supervised method that has been applied in the
literature (11-16) to a large range of pattern recognition prob-
lems such as object recognition, face detection, or text categoriza-
tion. The aim of SVM is to find an optimal hyperplane (classi-
fier) that correctly separates objects of the different classes as
much as possible. This is done by leaving the largest possible
fraction of points of the same class on the same side and maxi-
mizing the distance of either class from the hyperplane. The
classifier would be useful in recognizing new members of the
class.

For a two class problem, SVM chooses a specific hyperplane
among the many that can separate the data in order to avoid
overfitting. This hyperplane is chosen as the one that maximizes
the minimum distance from the hyperplane to the closest training
points in both classes (margin). These points determining the
hyperplane are called support vectors. The hyperplane is found
by defining a mapping [z ) φ(xi)] that transforms thed
dimensional input dataxi into a higherd′ dimensional space
(feature space).

A SVM model consists of finding an optimal solution for
the quadratic programming problem:

under the constraints:

wheren is the number of training data points,yi is the reference

FCj ) Hj/Ej (1)

min (12|Riyi|
2 + C ∑

i)1

n

êi) (2)

yi [R iyiφ(xi)
T + b] g 1 - êi

êi g 0, for i ) 1,...,n
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or class value ((1 for the training pointsxi), Ri are the
parameters learned from the data (Lagrange multipliers),b
represents the offset parameter,C is the penalty to pay for
accepting classification errors, andêi represents the variable that
measures this misclassification error. The first part of this
equation explains for the maximization of the margin, and the
second part explains for the minimization of misclassification
error. Because solving this equation is difficult, due to the high
dimensionality of the feature space, a kernel function is used
to calculate the separating hyperplane. This function implicitly
represents the construction of an optimal hyperplane in a high
dimensional space and then returns to the original space as a
nonlinear decision frontier. With an appropriately chosen kernel
function, any consistent training set can be made separable. The
kernel used here is a Gaussian radial basis function.

whereσ is the width of the Gaussian function and it reflects
the degree of generalization.

The penaltyC has to be added in order to take into account
those samples that cannot be separated. WhenC is large, the
second term of the eq 2 dominates, forcing the SVM toward a
solution with the least training error and decreasing the amount
of generalization. WhenC is decreased, more emphasis is placed
on maximizing the margin and emphasizing the generalization.
This generalization could also be obtained by increasing the
value ofσ in the Gaussian function.

The points that determine the hyperplane are the support
vectors, and they correspond to the points for whichRi is
positive. The other points are not used andRi ) 0. Different
algorithms have been proposed in the literature to perform SVM
for classification. The Lin’s Lib SVM v2.33 algorithm (20) is
used in this study.

MATERIALS AND METHODS

Samples.Two hundred ninety-eight starch samples were collected
in various factories located in the United States and in Europe. The
distribution of their true classification and of their origin is presented
in Table 1.

Sixty-six samples were removed from the data set, because insuf-
ficient information on their classification was available or because of
the too low number of samples in some classes. Therefore, the final

data set contained 232 starch samples of four different classes: the
class “Nativ” consisted of 38 samples, the class “E1412” consisted of
25 samples, the class “E1422” consisted of 57 samples, and the class
“E1422” consisted of 112 samples.

This data set was split into two subsets: a training set containing
75% of the objects from each class. This subset was later used for the
construction of the discrimination models, and a test set, containing
25% of the objects from each class, was used for validation. Thus,
172 samples were available for the model development, and 60 samples
were used for validation. Moreover, an independent data set was
available, containing 36 samples consisting of 32 samples coming from
the EU and four from the United States.

Spectra Acquisition. Midinfrared spectra (4000 to 600 cm-1 at 1
cm-1 data intervals) were collected with a spectral resolution of 4 cm-1

on a Perkin-Elmer Spectrum 2000 FTIR spectrometer (Perkin-Elmer
Corp., Norwalk, CT) equipped with an ATR system Specac MKII
GoldenGate (Specac Inc., Smyrna, GA) positioned so that the incident
angle was 45°. The spectrophotometer was fitted with a wire coil
operated at 1350 K as a IR light source, a potassium bromide beam
splitter, and a DTGS detector.

Sample storage, sample preparation, and data acquisition were carried
out at 25°C. Data acquisition was performed over several days, and
samples were taken in random order. After thorough mixing, a portion
of the powder sample was positioned on the ATR diamond surface. A
pressure of 11000 psi was applied on the sample by means of a pressure
clamp. Each spectrum represents the average of 16 scans radioed against
the background, which was collected with the empty ATR accessory
under the same conditions at the beginning of each day of analysis.
Between the samples, the ATR surface was thoroughly cleaned with
water and alcohol. As no thermal equilibration was required, the whole
spectra acquisition procedure took 3 min per sample.

Data acquisition was carried out using Spectrum Quant+ version
4.51.02 (Perkin-Elmer Corp.). The reflectance spectra were transformed
into absorbance prior to their transfer to Matlab 7.0.

Typical spectra of starches (not modified and various types of
modification) are presented inFigure 1. Some differences can be
observed between the spectra. However, they are very small; therefore,
the use of chemometric tools is necessary to build a powerful, robust,
and discriminating model.

Prior to data analysis and model development, all spectra were
trimmed. The range between 2402 and 1901 cm-1 was removed from
the spectra, because it did not contain any useful information and was
rather noisy (gray area inFigure 1). The resulting spectra contained
1901 data points: from 4000 to 2401 cm-1 and from 1900 to 600 cm-1.

Software. All computations, chemometric analyses, and graphics
were carried out with programs developed in Matlab v7.0 (The
Mathworks, Inc., Natick, MA).

Model Implementation. In this study, the performance of different
classification methods was compared. Within the training set, leave-
one-out cross-validation was carried out to optimize the model, i.e., to
find the number of variables, with which one obtains the best

Table 1. Description of the Sample Sets: Origin and Distribution in
the Classes

no. of samples total

name
United
States EU total

removed
samples total training test

native 11 27 38 28 10
E1401 4 0 4 4
E1404 0 1 1 1
E1411 0 1 1 1
E1412 12 13 25 18 7
E1414 0 1 1 1
E1422 22 35 57 42 15
E1440 5 1 6 6
E1442 100 12 112 84 28
unknown 9 39 48 48
E1450 0 1 1 1
E1402 0 2 2 2
E1420 0 1 1 1
E1455 0 1 1 1
total 163 135 298 66 172 60

K(xi,xj) ) exp(-
|xi - xj|

2

2σ2 ) for all pairs of objects (3)

Figure 1. Typical FTIR spectra of starches modified or not recorded using
an ATR accessory.
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classification rate. To do that, the reduction of the feature space was
performed using a combination of PCA and the FC, i.e., the PCs were
ranked according to the FC in order to decide which PCs have an
important discriminating power.

For PLS-DA, the number of latent variables was selected as the one
that drove to the minimum RMSE (root-mean-square error). In ANN,
the data set was divided into three subsets: a training set, a monitoring
set, and a test set. The model was built with the training set, and the
monitoring set was necessary to avoid overtraining. For SVM, theC
and σ parameters were optimized using the optimization separate
training and validation subsets. The optimal parameter settingsC and
σ were selected as the values that give the minimum RMSE and the
maximum classification rate.

The classification or success rate is defined as:

with K being the number of classes. A success rate of, for instance,
0.9012 indicates that 90.12% of the objects are correctly classified.
This study was carried out on the raw data and on the data using two
different preprocessing techniques: the SNV (standard normal variate)
transformation and the first derivative.

RESULTS AND DISCUSSION

FromTable 2andFigure 2, the performance of the different
classifiers can be compared. In this table, the success rates
obtained for the training set with cross-validation and the success
rates for the classification of the test set are summarized.

From these results, several conclusions can be drawn. Among
the simple discrimination methods, LDA performed better than
QDA. This is an indication that the assumptions for LDA
(normally distributed data, equal variance-covariance matrix
for all classes) were sufficiently well-fulfilled. The performance
of QDA was somewhat worse because more parameters had to

be estimated; therefore, more objects per class were needed.
LDA was also applied on the raw data without using PCA and
by selecting the variables by the FC. Working in such a way,
the results were not as good as the ones using the principal
components (PCs) with a success rate for the training and for
the test set of 0.794 and 0.755, respectively.

kNN is a method that does not consider the shape of classes
and defines similarities to a class only according to similarities
of individual points. The chance of classifying an object wrongly
is higher with 1NN than with 3NN. In the case of 3NN, more
neighbors were included and the results became more reliable.
In the case of 3NN, the objects were classified according to the
majority rule. If an object is classified an equal number of times
in several classes, then it will not be classified at all, and this
explains some of the failures obtained with 3NN.

In SIMCA, a classification model (PC model) was constructed
for each class individually. Here, it was arbitrarily decided to
retain only the PCs containing more than 1% of the total
variance for modeling with a maximum of three PCs for each
model. For every model, a success rate was calculated. An
important factor for the classification using SIMCA is the
number of PCs to be included in the different models.

The best results were obtained with PLS-DA, ANN, and
mainly with SVM. In all cases, the correct selection of the tuning
parameters (number of latent variables for PLS-DA, number of
input factors, and hidden nodes for ANN andC andσ for SVM)
was critical to get good predictive performance. When looking
at the success rates obtained with the different discrimination
equations for the test set, one can conclude that several objects
were misclassified. Different reasons were possible for that. The
first one could be the natural heterogeneity and the dimension
of the data set. When using leave-one-out cross-validation, one
object was left out at the time, in such a way that if an extreme
sample was left out, the remaining objects could not span the
same space anymore, and as result, the object left out would
not be classified in this class.

Another reason could be the selection of the optimal par-
ameters for all of the methods (number of PCs, latent variables,
C andσ, input, and hidden nodes). This is a critical point for
all of the discrimination techniques. The classification results
showed, for instance, that models established with different
number of parameters lead to different success rates (not shown).

Preprocessing of the spectra did not influence much the results
here, but it seemed nevertheless to be useful. SNV and first
derivative decrease physical spectral information due to particle
size, so that the models were mainly built based on chemical
spectral information. Moreover, it increased the between class
variance.

Once the different classification models were constructed and
validated, they could be used for the prediction of the new data
set proposed here. The results for this data set using all SVM

Table 2. Performance of the Different Classifiers

success rate

method preprocessing no. parameters training test

LDA raw 16a 0.9012 0.8202
snv 12 0.8663 0.8119
first deriv 11 0.8779 0.7548

QDA raw 5a 0.8547 0.7351
snv 4 0.8430 0.6923
first deriv 10 0.8837 0.7298

1NN raw 2a 0.7791 0.6000
snv 7 0.8081 0.6262
first deriv 4 0.8256 0.6797

3NN raw 3a 0.8023 0.6000
snv 4 0.8430 0.5542
first deriv 4 0.8372 0.6797

SIMCA raw 3/3/3/3b 0.8006 0.7423
snv 2/2/2/2 0.7560 0.7137
first deriv 1/1/1/1 0.7054 0.7631

SVM raw 100/1c 0.9826 0.8333
snv 100/0.035 0.9767 0.8500
first deriv 10000/1 0.9012 0.8333

ANN raw 15/3, 14/1, 11/1, 5/1d 0.8994 0.7653
snv 16/2, 9/4, 11/1, 6/4 0.9336 0.8284
first deriv 5/4, 13/2, 4/3, 7/5 0.8530 0.7971

PLS-DA raw 15e 0.9445 0.7649
snv 15 0.9563 0.8006
first deriv 15 0.9673 0.7726

a Number of PCs. b Number of PCs for each of the individual PC models. c C/
σ. d For each model: number of inputs (PCs)/number of hidden nodes. e Number
of latent variables.

success rate)
(∑

i)1

K correctly classified samples in classi

total number of samples in classi )
K

(4)

Figure 2. Performance of the different classifiers for the raw data.
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are shown inTable 3 (only raw results are shown). The first
32 samples correspond to the samples coming from the EU and
the four last samples are the samples coming from the United
States. The first and second columns represent the sample num-
ber and the sample name, respectively, the third column shows,
for each object, the real group where the sample belongs, and
the last column represents the group attribution for each sample
using SVM. For this data set, eight samples were misclassified
that correspond to 22% of the data, and a 78% of correct classi-
fication was obtained. These results correspond in a good way
to the results obtained with the validation data set (seeTable
2). If the results were studied according to the origin of the
samples, then 81.25 and 50% of the EU samples and U.S. sam-
ples, respectively, were correctly classified. The low percentage
obtained for the U.S. data set could be due to the low number
of samples available for prediction (only four samples) and that
the U.S. data were collected differently as the EU samples.

In conclusion, the results of this study showed that the
different discrimination methods based on IR data can be
effective tools for the classification of starches according to the
type of chemical modification undergone. All of the classical
discrimination methods used in this study could be successfully
applied to classification problems, but the best results were the
ones obtained using the more recent SVM technique. SVM is
very robust against high dimensionalities and shows a very good
performance in all of the cases. These properties, combined with
a clear theoretical background, make SVM a good candidate to
be applied to any complex industrial pattern recognition
problem.
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Table 3. Performance of the SVM Method on a New Data Seta

sample name real predicted SVM

1 N003 Nativ Nativ
2 N004 Nativ Nativ
3 N009 Nativ Nativ
4 N010 Nativ Nativ
5 N012 Nativ Nativ
6 N037 E1412 Nativ
7 N045 E 1442 E1442
8 N047 Nativ Nativ
9 N071 E 1442 E1442
10 N078 Nativ Nativ
11 N079 Nativ E1412
12 N080 Nativ Nativ
13 N081 E 1442 E1442
14 N082 Nativ Nativ
15 N083 Nativ E1442
16 N084 E 1442 E1442
17 N085 Nativ Nativ
18 N089 Nativ Nativ
19 N091 Nativ Nativ
20 N093 Nativ Nativ
21 N099 Nativ Nativ
22 N100 E 1412 Nativ
23 N103 Nativ E1412
24 N110 Nativ E1412
25 N116 E 1442 E1442
26 N120 E 1442 E1442
27 N121 E 1442 E1442
28 N122 E 1442 E1442
29 N123 E 1422 E1422
30 N124 Nativ Nativ
31 N128 Nativ Nativ
32 N129 Nativ Nativ
33 J7139-002 E1442 E1442
34 J7139-005 E1442 E1412
35 J7139-006 E1442 E1442
36 J7139-019 E1442 E1412

a The first 32 samples correspond to EU data, and the last four samples
correspond to U.S. data.
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